A Distinguishable Pseudo-Feature Synthesis Method for Generalized Zero-Shot Learning.
Yunpeng JiaXiufen YeYusong LiuHuiming XingShuxiang GuoPublished in: Computational intelligence and neuroscience (2022)
Generalized zero-shot learning (GZSL) aims to classify seen classes and unseen classes that are disjoint simultaneously. Hybrid approaches based on pseudo-feature synthesis are currently the most popular among GZSL methods. However, they suffer from problems of negative transfer and low-quality class discriminability, causing poor classification accuracy. To address them, we propose a novel GZSL method of distinguishable pseudo-feature synthesis (DPFS). The DPFS model can provide high-quality distinguishable characteristics for both seen and unseen classes. Firstly, the model is pretrained by a distance prediction loss to avoid overfitting. Then, the model only selects attributes of similar seen classes and makes sparse representations based on attributes for unseen classes, thereby overcoming negative transfer. After the model synthesizes pseudo-features for unseen classes, it disposes of the pseudo-feature outliers to improve the class discriminability. The pseudo-features are fed into a classifier of the model together with features of seen classes for GZSL classification. Experimental results on four benchmark datasets verify that the proposed DPFS has GZSL classification performance better than that in existing methods.