Login / Signup

Synthesis of phosphiranes via organoiron-catalyzed phosphinidene transfer to electron-deficient olefins.

Tiansi XinMichael B GeesonHui ZhuZheng-Wang QuStefan GrimmeChristopher C Cummins
Published in: Chemical science (2022)
Herein is reported the structural characterization and scalable preparation of the elusive iron-phosphido complex FpP( t Bu)(F) (2-F, Fp = (Fe(η 5 -C 5 H 5 )(CO) 2 )) and its precursor FpP( t Bu)(Cl) (2-Cl) in 51% and 71% yields, respectively. These phosphide complexes are proposed to be relevant to an organoiron catalytic cycle for phosphinidene transfer to electron-deficient alkenes. Examination of their properties led to the discovery of a more efficient catalytic system involving the simple, commercially available organoiron catalyst Fp 2 . This improved catalysis also enabled the preparation of new phosphiranes with high yields ( t BuPCH 2 CHR; R = CO 2 Me, 41%; R = CN, 83%; R = 4-biphenyl, 73%; R = SO 2 Ph, 71%; R = POPh 2 , 70%; R = 4-pyridyl, 82%; R = 2-pyridyl, 67%; R = PPh 3 + , 64%) and good diastereoselectivity, demonstrating the feasibility of the phosphinidene group-transfer strategy in synthetic chemistry. Experimental and theoretical studies suggest that the original catalysis involves 2-X as the nucleophile, while for the new Fp 2 -catalyzed reaction they implicate a diiron-phosphido complex Fp 2 (P t Bu), 4, as the nucleophile which attacks the electron-deficient olefin in the key first P-C bond-forming step. In both systems, the initial nucleophilic attack may be accompanied by favorable five-membered ring formation involving a carbonyl ligand, a (reversible) pathway competitive with formation of the three-membered ring found in the phosphirane product. A novel radical mechanism is suggested for the new Fp 2 -catalyzed system.
Keyphrases
  • electron transfer
  • room temperature
  • visible light
  • molecularly imprinted
  • solar cells
  • high throughput
  • wild type
  • crystal structure