An algorithm based on the ability of TEO to track the changes in the envelope of ECG signal is proposed for identifying PVCs in ECG. Teager energy is calculated from DCT coefficients of ECG signal. This method can be considered as computationally efficient algorithm when compared with the well-known DCT cepstrum technique. EPE is derived from the teager energy of DCT coefficients in DCT-TEO method and from the cepstrum of DCT coefficients in the existing method. EPE determines the decay rate of the action potential of ECG beat and provides sufficient information to identify the PVC beats in ECG data. EPEs obtained by DCT-TEO and existing DCT cepstrum models are compared. The proposed algorithm has resulted in performance measures like sensitivity of 98-100%, positive predictivity of 100%, and detection error rate of 0.03%, when tested on MIT-BIH database signals consisting of PVC and normal beats. Result analysis reveals that the DCT-TEO algorithm worked well in clear identification of PVCs from normal beats compared to the existing algorithm, even in the presence of artifacts like baseline wander, PLI, and noise with SNR of up to -5 dB.