Login / Signup

Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets.

Grzegorz TarasiukMarta D RemmengaKathleen C O'HaraMarian K TalbertMarisa L RotoloPam ZaabelDanyang ZhangLuis Gabriel Gimenez-LirolaJeffrey J Zimmerman
Published in: Animals : an open access journal from MDPI (2024)
Laboratory methods for detecting specific pathogens in oral fluids are widely reported, but there is little research on the oral fluid sampling process itself. In this study, a fluorescent tracer (diluted red food coloring) was used to test the transfer of a target directly from pigs or indirectly from the environment to pen-based oral fluid samples. Pens of ~30, ~60, and ~125 14-week-old pigs (32 pens/size) on commercial swine farms received one of two treatments: (1) pig exposure, i.e., ~3.5 mL of tracer solution sprayed into the mouth of 10% of the pigs in the pen; (2) environmental exposure, i.e., 20 mL of tracer solution was poured on the floor in the center of the pen. Oral fluids collected one day prior to treatment (baseline fluorescence control) and immediately after treatment were tested for fluorescence. Data were evaluated by receiver operating characteristic (ROC) analysis, with Youden's J statistic used to set a threshold. Pretreatment oral fluid samples with fluorescence responses above the ROC threshold were removed from further analysis (7 of 96 samples). Based on the ROC analyses, oral fluid samples from 78 of 89 pens (87.6%), contained red food coloring, including 43 of 47 (91.5%) pens receiving pig exposure and 35 of 42 (83.3%) pens receiving environmental exposure. Thus, oral fluid samples contain both pig-derived and environmental targets. This methodology provides a safe and quantifiable method to evaluate oral fluid sampling vis-à-vis pen behavior, pen size, sampling protocol, and target distribution in the pen.
Keyphrases
  • clinical trial
  • positron emission tomography
  • climate change
  • big data
  • antimicrobial resistance
  • energy transfer