Login / Signup

Optical imaging featuring both long working distance and high spatial resolution by correcting the aberration of a large aperture lens.

Changsoon ChoiKyung-Deok SongSungsam KangJin-Sung ParkWonshik Choi
Published in: Scientific reports (2018)
High-resolution optical imaging within thick objects has been a challenging task due to the short working distance of conventional high numerical aperture (NA) objective lenses. Lenses with a large physical diameter and thus a large aperture, such as microscope condenser lenses, can feature both a large NA and a long working distance. However, such lenses suffer from strong aberrations. To overcome this problem, we present a method to correct the aberrations of a transmission-mode imaging system that is composed of two condensers. The proposed method separately identifies and corrects aberrations of illumination and collection lenses of up to 1.2 NA by iteratively optimizing the total intensity of the synthetic aperture images in the forward and phase-conjugation processes. At a source wavelength of 785 nm, we demonstrated a spatial resolution of 372 nm at extremely long working distances of up to 1.6 mm, an order of magnitude improvement in comparison to conventional objective lenses. Our method of converting microscope condensers to high-quality objectives may facilitate increases in the imaging depths of super-resolution and expansion microscopes.
Keyphrases
  • high resolution
  • cataract surgery
  • mass spectrometry
  • copy number
  • high speed
  • deep learning
  • machine learning
  • photodynamic therapy
  • gene expression
  • physical activity
  • genome wide
  • dna methylation
  • optic nerve