Colloidal Ag 2 Se intraband quantum dots.
Mohammad Mostafa Al MahfuzJunsung ParkRakina IslamDong-Kyun KoPublished in: Chemical communications (Cambridge, England) (2023)
With the emergence of the Internet of Things, wearable electronics, and machine vision, the exponentially growing demands for miniaturization, energy efficiency, and cost-effectiveness have imposed critical requirements on the size, weight, power consumption and cost (SWaP-C) of infrared detectors. To meet this demand, new sensor technologies that can reduce the fabrication cost associated with semiconductor epitaxy and remove the stringent requirement for cryogenic cooling are under active investigation. In the technologically important spectral region of mid-wavelength infrared, intraband colloidal quantum dots are currently at the forefront of this endeavor, with wafer-scale monolithic integration and Auger suppression being the key material capabilities to minimize the sensor's SWaP-C. In this Feature Article, we provide a focused review on the development of sensors based on Ag 2 Se intraband colloidal quantum dots, a heavy metal-free colloidal nanomaterial that has merits for wide-scale adoption in consumer and industrial sectors.
Keyphrases
- quantum dots
- sensitive detection
- deep learning
- energy transfer
- health information
- machine learning
- body mass index
- low cost
- physical activity
- weight loss
- heavy metals
- healthcare
- mass spectrometry
- magnetic resonance imaging
- risk assessment
- heart rate
- room temperature
- social media
- liquid chromatography
- computed tomography
- high resolution
- molecularly imprinted
- neural network
- solid phase extraction