Login / Signup

Unraveling Ultrasonic Stress Response of Nanovesicles by the Mechanochromism of Self-Assembled Polydiacetylene.

Qing LiYi-Xuan WangYulan Chen
Published in: ACS macro letters (2021)
The force response of nanosized vesicles shows substantial applications in drug delivery, cancer therapies, and so on. Conventional methods in mechanical studies on vesicles rely on a camera and an optical microscope, which can hardly work for nanosized particles. Herein, we use self-assembled polydiacetylene (PDA) as a chromic mechanoresponsive group to study the responsiveness of nanovesicles under sonication. The sonication-induced deformation of the PDA backbone and reduction in its conjugation length leads to a color transition from blue to red. Three internal and external factors, including greater shear stress, lower polymerization degree, and higher viscosity of the continue phase, have been found to promote the mechanochromism of the vesicles. These results, for the first time, reveal that the force response of vesicles depends on the actual capillary number (correlated with the three explored factors), even at the nanoscale level, which opens a new avenue to mechanical modulation of nanovesicles for the development of vesicle-based bio- and nanotechniques.
Keyphrases