Yedoma Permafrost Releases Organic Matter with Lesser Affinity for Cu 2+ and Ni 2+ as Compared to Peat from the Non-Permafrost Area: Risk of Rising Toxicity of Potentially Toxic Elements in the Arctic Ocean.
Nikita A SobolevKonstantin S LarionovDarya S MryasovaAnna N KhreptugovaAlexander B VolikovAndrey I KonstantinovDmitry S VolkovIrina V PerminovaPublished in: Toxics (2023)
Pollution of the Arctic Ocean by potentially toxic elements (PTEs) is a current environmental problem. Humic acids (HAs) play an important role in the regulation of PTE mobility in soil and water. The permafrost thaw releases ancient organic matter (OM) with a specific molecular composition into the Arctic watersheds. This could affect the mobility of PTEs in the region. In our study, we isolated HAs from two types of permafrost deposits: the Yedoma ice complex, which contains pristine buried OM, and the alas formed in the course of multiple thaw-refreezing cycles with the most altered OM. We also used peat from the non-permafrost region as the recent environmental endmember for the evolution of Arctic OM. The HAs were characterized using 13 C NMR and elemental analysis. Adsorption experiments were conducted to assess the affinity of HAs for binding Cu 2+ and Ni 2+ . It was found that Yedoma HAs were enriched with aliphatic and N-containing structures as compared to the much more aromatic and oxidized alas and peat HAs. The adsorption experiments have revealed that the peat and alas HAs have a higher affinity for binding both ions as compared to the Yedoma HAs. The obtained data suggest that a substantial release of the OM from the Yedoma deposits due to a rapid thaw of the permafrost might increase the mobility of PTEs and their toxicity in the Arctic Ocean because of much lesser "neutralization potential".