Power Output Enhancement of Natural Rubber Based Triboelectric Nanogenerator with Cellulose Nanofibers and Activated Carbon.
Pongsakorn MekbuntoonWalailak KaeochanaTeerayut PradaIntuorn AppamatoViyada HarnchanaPublished in: Polymers (2022)
The growing demand for energy and environmental concern are crucial driving forces for the development of green and sustainable energy. The triboelectric nanogenerator (TENG) has emerged as a promising solution for harvesting mechanical energy from the environment. In this research, a natural rubber (NR)-based TENG has been developed with an enhanced power output from the incorporation of cellulose nanofibers (CNF) and activated carbon (AC) nanoparticles. The highest voltage output of 137 V, a current of 12.1 µA, and power density of 2.74 W/m 2 were achieved from the fabricated NR-CNF-AC TENG. This is attributed to the synergistic effect of the electron-donating properties of cellulose material and the large specific surface area of AC materials. The enhancement of TENG performance paves the way for the application of natural-based materials to convert mechanical energy into electricity, as a clean and sustainable energy source.
Keyphrases