Login / Signup

Atomically Precise Preorganization of Open Metal Sites on Gold Nanoclusters with High Catalytic Performance.

Shang-Fu YuanZhen LeiZong-Jie GuanQuan-Ming Wang
Published in: Angewandte Chemie (International ed. in English) (2021)
Gold nanoclusters with surface open sites are crucial for practical applications in catalysis. We have developed a surface geometric mismatch strategy by using mixed ligands of different type of hindrance. When bulky phosphine Ph3 P and planar dipyridyl amine (Hdpa) are simultaneously used, steric repulsion between the ligands will reduce the ligand coverage of gold clusters. A well-defined access granted gold nanocluster [Au23 (Ph3 P)10 (dpa)2 Cl](SO3 CF3 )2 (Au23 , dpa=dipyridylamido) has been successfully synthesized. Single crystal structural determination reveals that Au23 has eight uncoordinated gold atoms in the shape of a distorted bicapped triangular prism. The accessibility of the exposed Au atoms has been confirmed quantitatively by luminescent titration with 2-naphthalenethiol. This cluster has excellent performance toward selective oxidation of benzyl alcohol to benzaldehyde and demonstrates excellent stability due to the protection of negatively charged multidentate ligand dpa.
Keyphrases
  • sensitive detection
  • quantum dots
  • silver nanoparticles
  • reduced graphene oxide
  • visible light
  • healthcare
  • gold nanoparticles
  • energy transfer
  • nitric oxide
  • hydrogen peroxide
  • health insurance
  • high resolution
  • solid state