Login / Signup

A general method to synthesize and sinter bulk ceramics in seconds.

Chengwei WangWeiwei PingQiang BaiHuachen CuiRyan HensleighRuiliu WangAlexandra H BrozenaZhenpeng XuJiaqi DaiYong PeiChaolun ZhengGlenn PastelJinlong GaoXizheng WangHoward WangJi-Cheng ZhaoBao YangXiaoyu Rayne ZhengJian LuoYifei MoBruce S DunnLiangbing Hu
Published in: Science (New York, N.Y.) (2020)
Ceramics are an important class of materials with widespread applications because of their high thermal, mechanical, and chemical stability. Computational predictions based on first principles methods can be a valuable tool in accelerating materials discovery to develop improved ceramics. It is essential to experimentally confirm the material properties of such predictions. However, materials screening rates are limited by the long processing times and the poor compositional control from volatile element loss in conventional ceramic sintering techniques. To overcome these limitations, we developed an ultrafast high-temperature sintering (UHS) process for the fabrication of ceramic materials by radiative heating under an inert atmosphere. We provide several examples of the UHS process to demonstrate its potential utility and applications, including advancements in solid-state electrolytes, multicomponent structures, and high-throughput materials screening.
Keyphrases
  • high throughput
  • solid state
  • high temperature
  • ionic liquid
  • mass spectrometry
  • simultaneous determination
  • low cost