Representations for complex numbers with integer digits.
Paul SurerPublished in: Research in number theory (2020)
We present the zeta-expansion as a complex version of the well-known beta-expansion. It allows us to expand complex numbers with respect to a complex base by using integer digits. Our concepts fits into the framework of the recently published rotational beta-expansions. But we also establish relations with piecewise affine maps of the torus and with shift radix systems.
Keyphrases