Flavonoids as Protein Disulfide Isomerase Inhibitors: Key Molecular and Structural Features for the Interaction.
Xinyuan LiaoXingxing ZhuangChenghui LiangJinyu LiRobert FlaumenhaftCai YuanMing-Dong HuangPublished in: Journal of agricultural and food chemistry (2022)
Quercetin-3-rutinoside (rutin) is a bioflavonoid that is common in foods. The finding that quercetin-3-rutinoside inhibits protein disulfide isomerase (PDI) and potently blocks thrombosis in vivo has enabled the evaluation of PDI inhibition in multiple animal models of thrombus formation and has prompted clinical studies of PDI inhibition in thrombosis. Nonetheless, how quercetin-3-rutinoside blocks PDI activity remains an unanswered question. Combining NMR spectroscopy, site-directed mutagenesis, and biological assays, we identified H256 as the key residue for PDI interacting with quercetin-3-rutinoside. Quercetin-3-rutinoside inhibited the activity of PDI (WT) but not PDI (H256A). Molecular dynamic simulations indicated that the flavonoid skeleton, but not the rutinoside conjugate, is embedded in the major binding pocket on the b' domain. Among several quercetin-3-rutinoside analogues tested, only compounds with a phenoxyl group at position 7 showed direct binding to PDI, further supporting our molecular model. Studies using purified coagulation factors showed that quercetin-3-rutinoside inhibited the augmenting effects of PDI (WT), but not PDI (H256A), on tissue factor (TF) activity. Quercetin-3-rutinoside also inhibited chemotherapy-induced TF activity enhancement on endothelial cells. Together, our studies show that residue H256 in PDI and the phenoxyl group at position 7 in quercetin-3-rutinoside are essential for inhibition of PDI by quercetin-3-rutinoside. These results provide new insight into the molecular mechanism by which flavonoids block PDI activity.