Login / Signup

Two-photon absorption and triplet excited state quenching of near-IR region aza-BODIPY photosensitizers via a triphenylamine moiety despite heavy bromine atoms.

Ahmet KaratayHalil YılmazElif Akhuseyin YildizGökhan SevinçMustafa HayvalıBahadir BoyaciogluHuseyin UnverAyhan Elmali
Published in: Physical chemistry chemical physics : PCCP (2022)
Aza-BODIPY compounds with methoxy groups at -3 and -5 and triphenylamine moieties at -1 and -7 positions with and without heavy bromine atoms at -2 and -6 positions have been designed and synthesized. The chemical structures of the novel compounds were fully characterized using 1 H NMR, 13 C NMR, FTIR, and HRMS-TOF-ESI techniques. Steady-state absorption and emission features were investigated to analyze ground-state interactions. The effects of triphenylamine moieties and bromine atoms on charge transfer dynamics and two-photon absorption (TPA) properties were investigated using femtosecond transient absorption spectroscopy measurements and open-aperture (OA) Z-scan experiments, respectively. Contrary to popular belief, the compound containing heavy bromine atoms and triphenylamine moieties did not demonstrate any triplet transition. Since the triphenylamine moiety has high electron-donating properties and a long conjugation length, it exhibited intramolecular charge transfer (ICT) features from electron-donating moieties to the aza-BODIPY core. Additionally, it is concluded that the excited-state lifetime is shortened in the presence of a bromine atom with triphenylamine moieties. This result is rather interesting since the triplet excited state is quenched by the triphenylamine moiety despite the presence of a heavy bromine atom. The performed OA Z-scan experiments revealed that the aza-BODIPY compound containing bromine atoms has a higher TPA cross-section value (116 GM) due to efficient intramolecular charge transfer compared to that without bromine atoms (89 GM). Additionally, in the theoretical calculations, it was found that the charge transfer percentage (CT%) was the strongest in compounds containing bromine atoms.
Keyphrases