Outstanding radiation resistance of tungsten-based high-entropy alloys.
Osman El-AtwaniNan LiM LiArun DevarajJ Kevin BaldwinMatthew M SchneiderD SobierajJan S WróbelDuc Manh NguyenS A MaloyEnrique MartinezPublished in: Science advances (2019)
A body-centered cubic W-based refractory high entropy alloy with outstanding radiation resistance has been developed. The alloy was grown as thin films showing a bimodal grain size distribution in the nanocrystalline and ultrafine regimes and a unique 4-nm lamella-like structure revealed by atom probe tomography (APT). Transmission electron microscopy (TEM) and x-ray diffraction show certain black spots appearing after thermal annealing at elevated temperatures. TEM and APT analysis correlated the black spots with second-phase particles rich in Cr and V. No sign of irradiation-created dislocation loops, even after 8 dpa, was observed. Furthermore, nanomechanical testing shows a large hardness of 14 GPa in the as-deposited samples, with near negligible irradiation hardening. Theoretical modeling combining ab initio and Monte Carlo techniques predicts the formation of Cr- and V-rich second-phase particles and points at equal mobilities of point defects as the origin of the exceptional radiation tolerance.