Login / Signup

Probing entanglement in a many-body-localized system.

Alexander LukinMatthew RispoliRobert SchittkoM Eric TaiAdam M KaufmanSoonwon ChoiVedika KhemaniJulian LéonardMarkus Greiner
Published in: Science (New York, N.Y.) (2019)
An interacting quantum system that is subject to disorder may cease to thermalize owing to localization of its constituents, thereby marking the breakdown of thermodynamics. The key to understanding this phenomenon lies in the system's entanglement, which is experimentally challenging to measure. We realize such a many-body-localized system in a disordered Bose-Hubbard chain and characterize its entanglement properties through particle fluctuations and correlations. We observe that the particles become localized, suppressing transport and preventing the thermalization of subsystems. Notably, we measure the development of nonlocal correlations, whose evolution is consistent with a logarithmic growth of entanglement entropy, the hallmark of many-body localization. Our work experimentally establishes many-body localization as a qualitatively distinct phenomenon from localization in noninteracting, disordered systems.
Keyphrases
  • single molecule