Login / Signup

Insight into the Adsorption-Interaction Mechanism of Cr(VI) at the Silica Adsorbent Surface by Evanescent Wave Measurement.

Yan XiongJie ChenMing DuanXiang LiJun LiCan ZhangShenwen FangRui LiuRun Zhang
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
The investigation of adsorption performance at the adsorbent surface can help to reveal the treatment mechanism and improve the treatment efficiency of adsorption technology for heavy metal ions (HMIs). This work developed a methodology to investigate the adsorption behavior of HMI Cr(VI) at the silica surface by confined near-field evanescent wave (CNFEW) measurement. A silica optical fiber (SOF) was used as the adsorption substrate and light waveguide element to integrate both Cr(VI) adsorption and CNFEW production on its surface. According to the sensitive CNFEW response, the adsorption behavior of Cr(VI) was in situ monitored and real-time evaluated. The thermodynamic information of adsorption equilibrium constant (Kads) and adsorption free energy (ΔG) and dynamic information of the apparent adsorption rate (vads) and adsorption time (tads) were obtained through Langmuir isotherm and kinetic fitting, respectively. Different reaction performances between Cr(VI) and adsorption sites were successfully differentiated, evaluated, and characterized. A site-decided-mechanism was therefore presented to describe the surface interaction process for Cr(VI), which including fast adsorption on type I Si-O- site through electrostatic attraction with [Formula: see text] and slow adsorption on type II Si-OH site through coordinative interaction with ΔGSiOH-Cr(VI)II = -26.18 kJ mol-1. The adsorption mechanism of Cr(VI) at the SOF silica surface was furthermore verified by zeta potential analysis, Fourier transform infrared investigation, and fluorescence imaging. Unlike conventional ex situ or in bulk detection, the present CNFEW-based approach targets the "localized" adsorption of Cr(VI) adsorbed to the solid adsorbent surface. Consequently, our work favorably constructs a surface platform and provides new insights on understanding the adsorption mechanism for HMIs.
Keyphrases
  • aqueous solution
  • magnetic resonance
  • risk assessment
  • computed tomography
  • high resolution
  • molecular dynamics simulations
  • quantum dots
  • ionic liquid
  • smoking cessation
  • data analysis
  • combination therapy
  • single cell