Login / Signup

Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems.

Jacopo CardelliniArianna BalestriCostanza MontisDebora Berti
Published in: Pharmaceutics (2021)
In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.
Keyphrases
  • single molecule
  • drug delivery
  • high resolution
  • healthcare
  • electron microscopy
  • gene expression
  • mental health
  • drug induced
  • multidrug resistant
  • label free
  • drug release