Login / Signup

Direct Molten Polymerization Synthesis of Highly Active Samarium Manganese Perovskites with Different Morphologies for VOC Removal.

Lizhong LiuHongbo ZhangJinping JiaTonghua SunMengmeng Sun
Published in: Inorganic chemistry (2018)
A morphology-controlled molten polymerization route was developed to synthesize SmMnO3 (SMO) perovskite catalysts with netlike (SMO-N), granular-like (SMO-G), and bulk (SMO-B) structures. The SMO perovskites were formed directly by a molten polymerization method, and their morphologies were controlled by using the derivative polymers as templates. Among all catalysts, the porous SMO-N exhibited the highest activity, over which the toluene, benzene, and o-xylene were completely oxidized to CO2 at 240, 270, and 300 °C, respectively, which was comparable to that of typical noble-metal catalysts. The apparent activation energies of toluene over SMO-N (56.4 kJ·mol-1) was much lower than that of SMO-G (70.8 kJ·mol-1) and SMO-B (90.1 kJ·mol-1). Based on the results of scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2 temperature-programmed reduction characterization, we deduce that the excellent removal efficiency of volatile organic compounds (VOCs) over SMO-N catalyst was attributable to the special structure, high surface Mn4+/Mn3+ and Olatt/Oads molar ratios, and strong reducibility. Due to the high activity, low cost, and simple preparation strategy, the SMO catalyst is a promising catalyst for VOC removal.
Keyphrases