The Topmost Water Structure at a Charged Silica/Aqueous Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.
Shu-Hei UrashimaAnton MyalitsinSatoshi NihonyanagiTakuhiro OtosuPublished in: The journal of physical chemistry letters (2018)
Despite recent significant advances in interface-selective nonlinear spectroscopy, the topmost water structure at a charged silica surface is still not clearly understood. This is because, for charged interfaces, not only interfacial molecules at the topmost layer but also a large number of molecules in the electric double layer are probed even with second-order nonlinear spectroscopy. In the present study, we studied water structure at the negatively charged silica/aqueous interface at pH 12 using heterodyne-detected vibrational sum frequency generation spectroscopy, and demonstrated that the spectral component of the topmost water can be extracted by examining the ionic strength dependence of the Imχ(2) spectrum. The obtained Imχ(2) spectrum indicates that the dominant water species in the topmost layer is hydrogen-bonded to the negatively charged silanolate at the silica surface with one OH group. There also exists minor water species that weakly interacts with the oxygen atom of a siloxane bridge or the remaining silanol at the silica surface, using one OH group. The ionic strength dependence of the Imχ(2) spectrum indicates that this water structure of the topmost layer is unchanged in a wide ionic strength range from 0.01 to 2 M.