Novel Biobased Polyamide 410/Polyamide 6/CNT Nanocomposites.
Itziar OtaegiNora AramburuAlejandro J MüllerGonzalo Guerrica-EchevarríaPublished in: Polymers (2018)
Biobased polyamide 410 (PA410)/multiwall carbon nanotube (CNT) nanocomposites (NCs) were obtained by melt-mixing in a twin screw extruder a Polyamide 6 (PA6)-based masterbatch (with 15 wt % CNT content) with neat PA410. Directly mixed PA410/CNT NCs were also obtained for comparison purposes. Transmision Electronic Microscopy (TEM) observation and conductivity measurements demonstrated that a good dispersion of CNTs was obtained, which was probably induced by the full miscibility between PA410 and PA6 (in the concentration range employed here), as ascertained by Differential Scanning Calorimetry (DSC) tests. As a result, the PA410/PA6/CNT NCs showed superior mechanical behaviour (≈10% Young's modulus increase with a 4 wt % CNT content) than the binary PA410/CNT NCs (≈5% Young's modulus increase with a 6 wt % CNT content), as well as superior electrical behaviour, with maximum conductivity values of approximately three orders of magnitude higher than in the binary PA410/CNT system, and lower percolation threshold values (0.65 wt % CNT content vs. 3.98 wt % CNT). The good dispersion and enhanced mechanical and electrical properties of these novel biobased nanocomposites, broadens their potential applications, such as electrical and electronics (E&E) or automotive industries.