Occurrence, Phenotypic and Molecular Characteristics of Vancomycin-Resistant Enterococci Isolated from Retail Raw Milk in Egypt.
Ahmed M HammadSeham S AlyHamdy A HassanNasser H AbbasAmira EltahanEman KhalifaTadashi ShimamotoPublished in: Foodborne pathogens and disease (2021)
The aim of this study was to determine the occurrence, phenotypic and molecular characteristics of vancomycin-resistant enterococci (VRE), isolated from retail raw cow's milk. One hundred milk samples collected from retail shops in Egypt were examined for the occurrence of VRE by using kanamycin aesculin azide agar supplemented with 4 μg/mL vancomycin. PCR was conducted to determine enterococcal species and to screen the isolated strains for the presence of antibiotic resistance and virulence genes. All isolated strains were characterized by antimicrobial susceptibility testing for 12 antibiotics. From 24 samples (24%), we recovered 22 isolates (91.6%) classified as VRE (minimum inhibitory concentration ≥32) and 2 isolates (8.3%) classified as intermediate resistant to vancomycin (≤16). Enterococcus faecium (29.1%), Enterococcus faecalis (12.5%), Enterococcus casseliflavus (16.6%), and Enterococcus gallinarum (4.1%) were identified by using multiplex PCR. The genus Enterococcus was resistant to clindamycin (100%), linezolid (91.6%), teicoplanin (91.6%), erythromycin (87.5%), and tetracycline (29.1%). Co-resistance to vancomycin, teicoplanin, and linezolid was detected in 83.3% of isolates. Antibiotic resistance genes vanB, tet(M), tet(L), and erm(B) were identified in 29.1%, 16.6%, 8.3%, and 4.1% of isolates, respectively. Virulence genes gelE and esp were detected in 16.6% and 12.5% of isolates, respectively. In conclusion, the high occurrence of co-resistance to vancomycin, teicoplanin, and linezolid reported in this study is alarming. The high frequency of linezolid resistance prompts increased the attention of researchers to routinely perform linezolid susceptibility in food isolates. This study declares potential food safety risks from consumption and improper handling of raw milk regarding clinically important bacteria and promotes necessary legislation for forbidding the selling and consumption of retail raw milk.
Keyphrases
- methicillin resistant staphylococcus aureus
- staphylococcus aureus
- biofilm formation
- high frequency
- escherichia coli
- genetic diversity
- risk assessment
- human health
- pseudomonas aeruginosa
- antibiotic resistance genes
- high throughput
- wastewater treatment
- transcranial magnetic stimulation
- gene expression
- climate change
- antimicrobial resistance
- candida albicans
- single cell