Login / Signup

Crystal structures of three β-halolactic acids: hydrogen bonding resulting in differing Z'.

Matthew N GordonYanyao LiuIbrahim H ShafeiM Kevin BrownSara E Skrabalak
Published in: Acta crystallographica. Section C, Structural chemistry (2022)
The crystal structures of three β-halolactic acids have been determined, namely, β-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C 3 H 5 ClO 3 ) (I), β-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C 3 H 5 BrO 3 ) (II), and β-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C 3 H 5 IO 3 ) (III). The number of molecules in the asymmetric unit of each crystal structure (Z') was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen-halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit.
Keyphrases
  • crystal structure
  • mass spectrometry
  • single molecule
  • pseudomonas aeruginosa
  • biofilm formation
  • solid state
  • candida albicans