Login / Signup

Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning.

Lohendran BaskaranSubhi J Al'ArefGabriel MaliakalBenjamin C LeeZhuoran XuJeong W ChoiSang-Eun LeeJi Min SungFay Y LinSimon DunhamBobak MosadeghYong-Jin KimIlan GottliebByoung Kwon LeeEun Ju ChunFilippo CademartiriErica MaffeiHugo MarquesSanghoon ShinJung Hyun ChoiKavitha ChinnaiyanMartin HadamitzkyEdoardo ConteDaniele AndreiniGianluca PontoneMatthew J BudoffJonathon A LeipsicGilbert L RaffRenu VirmaniHabib SamadyPeter H StoneDaniel S BermanJagat NarulaJeroen J BaxHyuk-Jae ChangJames K MinLeslee J Shaw
Published in: PloS one (2020)
An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level.
Keyphrases
  • deep learning
  • convolutional neural network
  • artificial intelligence
  • high resolution
  • machine learning
  • left ventricular
  • computed tomography
  • mass spectrometry