Login / Signup

A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles.

Zhiqiang ChenLian ChenLing LinYongning WuFengfu Fu
Published in: ACS sensors (2018)
Azodicarbonamide (ADA) in flour products can be converted into carcinogenic biurea and semicarbazide hydrochloride after baking. Thus, it is mandatory to determine ADA in flour. We herein developed a colorimetric method for the rapid and visual detection of ADA in flour based on glutathione (GSH)-induced gold nanoparticles (AuNPs) aggregation and specific reaction between ADA and GSH. The GSH can react to AuNPs via Au-SH covalent bond to form a network structure, which leads to AuNPs aggregation to produce color change, whereas ADA can specifically react with GSH to lead to the coupling of two GSH molecules, which makes GSH lose a -SH group and thus decreases the aggregation degree of AuNPs induced by GSH. This provided a platform for field-portable colorimetric detection of ADA. The colorimetric sensor can be used to detect as little as 0.33 μM (38.3 ppb) of ADA by naked eye observation and 0.23 μM (26.7 ppb) of ADA by spectrophotometry within 2 h. The method was successfully used to detect ADA in flour with a recovery of 91-104% and a relative standard deviation (RSD) < 6%. The visual detection limit of sensor is lower than the ADA limitation in flour (45 mg/kg), which makes the sensor a potential approach for the instrument-free visual and on-site detection of ADA in flour.
Keyphrases