The Peculiar Role of the Au3 Unit in Aum Clusters: σ-Aromaticity of the Au5Zn+ Ion.
Yanle LiVytor OliveiraChunmei TangDieter CremerChunyan LiuJing MaPublished in: Inorganic chemistry (2017)
The stability of small Aum (m = 4-7) clusters is investigated by analyzing their energetic, geometric, vibrational, magnetic, and electron density properties. Gold clusters can be constructed from stable cyclic 3-center-2-electron (3c-2e) Au3+ units (3-rings) with σ-aromaticity. The stabilization requires a flow of negative charge from internal 3-rings with electron-deficient bonding to peripheral 3-ring units with stronger Au-Au bonds. The valence-isoelectronic clusters Au6 and Au5Zn+ have similar electronic properties: Au5Zn+ is a strongly σ-aromatic molecule. An understanding of the structure of Aum clusters is obtained by deriving a Clar's Rule equivalent for polycyclic gold clusters: The structure with the larger number of rings with dominant 3c-2e character and a smaller degree of 3c-3e character occupies the global minimum of the Aum potential energy surface.