Login / Signup

Homogeneous Nucleation of Ice in Transiently-Heated, Supercooled Liquid Water Films.

Yuntao XuNikolay G PetrikR Scott SmithBruce D KayGreg A Kimmel
Published in: The journal of physical chemistry letters (2017)
We have investigated the nucleation and growth of crystalline ice in 0.24 μm thick, supercooled water films adsorbed on Pt(111). The films were transiently heated with ∼10 ns infrared laser pulses, which produced typical heating and cooling rates of ∼109-1010 K/s. The crystallization of these water films was monitored with infrared spectroscopy. The experimental conditions were chosen to suppress ice nucleation at both the water/metal and water/vacuum interfaces. Furthermore, internal pressure increases due to curvature effects are precluded in these flat films. Therefore, the experiments were sensitive to the homogeneous ice nucleation rate from ∼210 to 225 K. The experiments show that Jmax, the maximum for the homogeneous ice nucleation rate, J(T), needs to be ≥1026 m-3 s-1 and is likely to be ∼1029±2 m-3 s-1. We argue that such large nucleation rates are consistent with experiments on hyperquenched glassy water, which typically have crystalline fractions of ∼1% or more.
Keyphrases
  • room temperature
  • carbon nanotubes
  • ionic liquid