V1 neurons encode the perceptual compensation of false torsion arising from Listing's law.
Mohammad Farhan KhazaliHamidreza RamezanpourPeter ThierPublished in: Proceedings of the National Academy of Sciences of the United States of America (2020)
We try to deploy the retinal fovea to optimally scrutinize an object of interest by directing our eyes to it. The horizontal and vertical components of eye positions acquired by goal-directed saccades are determined by the object's location. However, the eccentric eye positions also involve a torsional component, which according to Donder's law is fully determined by the two-dimensional (2D) eye position acquired. According to von Helmholtz, knowledge of the amount of torsion provided by Listing's law, an extension of Donder's law, alleviates the perceptual interpretation of the image tilt that changes with 2D eye position, a view supported by psychophysical experiments he pioneered. We address the question of where and how Listing's law is implemented in the visual system and we show that neurons in monkey area V1 use knowledge of eye torsion to compensate the image tilt associated with specific eye positions as set by Listing's law.