Deep Learning Capabilities for the Categorization of Microcalcification.
Koushlendra Kumar SinghSuraj KumarMarios AntonakakisKonstantina MoirogiorgouAnirudh DeepKanchan Lata KashyapManish Kumar BajpaiMichalis ZervakisPublished in: International journal of environmental research and public health (2022)
Breast cancer is the most common cancer in women worldwide. It is the most frequently diagnosed cancer among women in 140 countries out of 184 reporting countries. Lesions of breast cancer are abnormal areas in the breast tissues. Various types of breast cancer lesions include (1) microcalcifications, (2) masses, (3) architectural distortion, and (4) bilateral asymmetry. Microcalcification can be classified as benign, malignant, and benign without a callback. In the present manuscript, we propose an automatic pipeline for the detection of various categories of microcalcification. We performed deep learning using convolution neural networks (CNNs) for the automatic detection and classification of all three categories of microcalcification. CNN was applied using four different optimizers (ADAM, ADAGrad, ADADelta, and RMSProp). The input images of a size of 299 × 299 × 3, with fully connected RELU and SoftMax output activation functions, were utilized in this study. The feature map was obtained using the pretrained InceptionResNetV2 model. The performance evaluation of our classification scheme was tested on a curated breast imaging subset of the DDSM mammogram dataset (CBIS-DDSM), and the results were expressed in terms of sensitivity, specificity, accuracy, and area under the curve (AUC). Our proposed classification scheme outperforms the ability of previously used deep learning approaches and classical machine learning schemes.
Keyphrases
- deep learning
- machine learning
- convolutional neural network
- neural network
- artificial intelligence
- papillary thyroid
- breast cancer risk
- polycystic ovary syndrome
- squamous cell
- childhood cancer
- high resolution
- big data
- loop mediated isothermal amplification
- gene expression
- real time pcr
- pregnancy outcomes
- emergency department
- pregnant women
- squamous cell carcinoma
- lymph node metastasis
- cervical cancer screening
- adverse drug
- magnetic resonance imaging
- case report
- magnetic resonance
- mass spectrometry
- metabolic syndrome
- sensitive detection