Amyloid Beta Pathology Exacerbates Weight Loss and Brain Cytokine Responses following Low-Dose Lipopolysaccharide in Aged Female Tg2576 Mice.
Rachel C KnoppKristen K BaumannMiranda L WilsonWilliam A BanksMichelle Ann EricksonPublished in: International journal of molecular sciences (2022)
Systemic inflammation has been implicated in the progression of Alzheimer's disease (AD); however, less is understood about how existing AD pathology contributes to adverse outcomes following acute inflammatory insults. In the present study, our goal was to determine how AD-associated amyloid beta (Aβ) pathology influences the acute neuroinflammatory and behavioral responses to a moderate systemic inflammatory insult. We treated 16-18-month-old female Tg2576 (Tg) mice, which overproduce human Aβ and develop plaques, and age-matched wild-type (WT) littermate mice with an intraperitoneal injection of 0.33 mg/kg lipopolysaccharide (LPS) or saline. Mice were then evaluated over the next 28 h for sickness/depressive-like behaviors (food intake, weight loss, locomotion, and sucrose preference), systemic inflammation (serum amyloid A, SAA), blood-brain barrier (BBB) disruption, astrogliosis (glial fibrillary acidic protein/GFAP), Aβ, and cytokine levels in the brain. We found that LPS caused a larger reduction in body weight in Tg vs. WT mice, but that other behavioral responses to LPS did not differ by genotype. BBB disruption was not apparent in either genotype following LPS. Concentrations of the systemic inflammatory marker, SAA, in the blood and brain were significantly increased with LPS but did not significantly differ by genotype. GFAP was increased in Tg mice vs. WT but was not significantly affected by LPS in either genotype. Finally, LPS-induced increases of eight cytokines (IL-1β, IL-6, IL-12 (p40), IL-10, IL-17A, MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5) were found to be significantly higher in Tg mice vs. WT. In summary, our data show that Aβ pathology exacerbates the neuroinflammatory response to LPS and identifies cytokines that are selectively regulated by Aβ. The association of worse neuroinflammation with greater weight loss in Tg mice suggests that Aβ pathology could contribute to poor outcomes following a systemic inflammatory insult.
Keyphrases
- inflammatory response
- blood brain barrier
- wild type
- lps induced
- weight loss
- high fat diet induced
- low dose
- anti inflammatory
- oxidative stress
- lipopolysaccharide induced
- body weight
- type diabetes
- cerebral ischemia
- liver failure
- toll like receptor
- body mass index
- immune response
- dna methylation
- adipose tissue
- insulin resistance
- genome wide
- brain injury
- high intensity
- spinal cord injury
- subarachnoid hemorrhage
- acute respiratory distress syndrome
- mechanical ventilation