Login / Signup

Switchable Microvalves Employing a Conducting Polymer and Their Automatic Operation in Conjunction with Micropumps with a Superabsorbent Polymer.

Shishir Kanti PramanikHiroaki Suzuki
Published in: ACS applied materials & interfaces (2020)
Automated microfluidic devices integrated with microvalves and micropumps were developed. To realize an efficient and automatic control of solution transport, we newly developed microvalves comprising a polypyrrole (PPy) film electropolymerized on patterned platinum electrodes and doped with a surfactant. The surface of the doped PPy film exhibits a nearly hydrophobic state or a hydrophilic state when oxidized or reduced under the application of an appropriate potential, enabling the control of the solution transport via capillary action. The simple structure and fabrication of the microvalves facilitated the integration of many valves in various flow channel structures. To improve the performance, simple suction and injection micropumps with freeze-dried discs made of a superabsorbent polymer (SAP) were additionally incorporated along with the microvalves. The former withdraws the solution by directly absorbing it onto the SAP, whereas the latter applies a pressure to the solution through an elastic diaphragm by absorbing a priming solution into the SAP. The significant volume changes of the SAP discs enabled an efficient transport of the solutions. Repeated injection and withdrawal of the solutions in and out of a reaction chamber were demonstrated using four injection and suction pumps and eight valves.
Keyphrases