Login / Signup

Synthesis and Characterization of Copper-Nanoflowers with the Utilization of Medicinal Plant Extracts for Enhanced Various Enzyme Inhibitory Activities.

Ufuk Koca-CaliskanCeylan DonmezNuraniye EruygurFatma AyazCevahir AltinkaynakNalan Ozdemir
Published in: Chemistry & biodiversity (2022)
In this study, organic-inorganic hybrid nanoflowers were synthesized using methanolic extracts of the medicinal plants Ajuga chamaepitys subsp. chia var. chia, Achillea wilhelmsii, Bongardia chrysogonum, Malva sylvestris, Phlomis grandiflora var. grandiflora, Verbascum sp. together with copper ions (Cu 2+ ). The synthesized plant extract based-inorganic hybrid nanoflowers (PE-ihNFs) of A. chamaepitys subsp. chia var. chia (Ac-ihNFs), A. wilhelmsii (Aw-ihNfs), B. chrysogonum (Bc-ihNFs), M. sylvestris (Ms-ihNFs) P. grandiflora var. grandiflora (Pg-ihNFs), and Verbascum sp. (Vs-ihNFs) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX), Fourier transform infrared spectrometry (FTIR), and X-Ray Diffraction (XRD). Also, several enzymes were selected to evaluate the enzyme inhibition activities of the synthesized PE-ihNFs. For the first-time, enzymes, tyrosinase, α-amylase and α-glucosidase, acetyl and butyryl cholinesterase inhibition activities of the PE-ihNFs with comparison to their plain plant extracts were evaluated in vitro. Results show that the among all the analyzed PE-ihNFs, demonstrated better α-glucosidase & α-amylase enzyme inhibition activity compared to the plain extracts. These initial studies are promising for the synthesis of these hybrid nanoflowers containing medicinal plant extracts, which might have commercial applications in the pharmaceutical and dermo-cosmetics industries.
Keyphrases
  • electron microscopy
  • high resolution
  • oxide nanoparticles
  • water soluble
  • mass spectrometry
  • molecular docking
  • cell wall
  • oxidative stress
  • quantum dots