Login / Signup

Zinc-indium-sulfide favors efficient C - H bond activation by concerted proton-coupled electron transfer.

Xuejiao WuXueting FanShunji XieIvan ScodellerXiaojian WenDario VangestelJun ChengBert F Sels
Published in: Nature communications (2024)
C - H bond activation is a ubiquitous reaction that remains a major challenge in chemistry. Although semiconductor-based photocatalysis is promising, the C - H bond activation mechanism remains elusive. Herein, we report value-added coupling products from a wide variety of biomass and fossil-derived reagents, formed via C - H bond activation over zinc-indium-sulfides (Zn-In-S). Contrary to the commonly accepted stepwise electron-proton transfer pathway (PE-ET) for semiconductors, our experimental and theoretical studies evidence a concerted proton-coupled electron transfer (CPET) pathway. A pioneering microkinetic study, considering the relevant elementary steps of the surface chemistry, reveals a faster C - H activation with Zn-In-S because of circumventing formation of a charged radical, as it happens in PE-ET where it retards the catalysis due to strong site adsorption. For CPET over Zn-In-S, H abstraction, forming a neutral radical, is rate-limiting, but having lower energy barriers than that of PE-ET. The rate expressions derived from the microkinetics provide guidelines to rationally design semiconductor catalysis, e.g., for C - H activation, that is based on the CPET mechanism.
Keyphrases
  • electron transfer
  • room temperature
  • risk assessment
  • wastewater treatment