Login / Signup

Characterization of pathogenic CD8+ T cells in Chlamydia-infected OT1 mice.

Zengzi ZhouQi TianLuying WangXin SunNu ZhangMin XueDabao XuGuangming Zhong
Published in: Infection and immunity (2021)
Chlamydia trachomatis is a leading infectious cause of infertility in women due to its induction of lasting pathology such as hydrosalpinx. Chlamydia muridarum induces mouse hydrosalpinx because C. muridarum can both invade tubal epithelia directly (as a 1st hit) and induce lymphocytes to promote hydrosalpinx indirectly (as a 2nd hit). In the current study, a critical role of CD8+ T cells in chlamydial induction of hydrosalpinx was validated in both wild type C57BL/6J and OT1 transgenic mice. OT1 mice failed to develop hydrosalpinx partially due to the failure of their lymphocytes to recognize chlamydial antigens. CD8+ T cells from naïve C57BL/6J rescued the recipient OT1 mice to develop hydrosalpinx when naïve CD8+ T cells were transferred at the time of infection with Chlamydia. However, when the transfer was delayed for 2 weeks or longer after the chlamydial infection, naïve CD8+ T cells no longer promoted hydrosalpinx. Nevertheless, Chlamydia-immunized CD8+ T cells still promoted significant hydrosalpinx in the recipient OT1 mice even when the transfer was delayed for 3 weeks. Thus, CD8+ T cells must be primed within 2 weeks after chlamydial infection to be pathogenic but once primed, they can promote hydrosalpinx for >3 weeks. However, Chlamydia-primed CD4+ T cells failed to promote chlamydial induction of pathology in OT1 mice. This study has optimized an OT1 mouse-based model for revealing the pathogenic mechanisms of Chlamydia-specific CD8+ T cells.
Keyphrases
  • wild type
  • high fat diet induced
  • insulin resistance
  • peripheral blood
  • metabolic syndrome