Login / Signup

Individual Differences in Attention and Intelligence: A United Cognitive/Psychometric Approach.

Andrew R A ConwayKristof KovacsHan HaoKevin P RosalesJean-Paul Snijder
Published in: Journal of Intelligence (2021)
Process overlap theory (POT) is a new theoretical framework designed to account for the general factor of intelligence (g). According to POT, g does not reflect a general cognitive ability. Instead, g is the result of multiple domain-general executive attention processes and multiple domain-specific processes that are sampled in an overlapping manner across a battery of intelligence tests. POT explains several benchmark findings on human intelligence. However, the precise nature of the executive attention processes underlying g remains unclear. In the current paper, we discuss challenges associated with building a theory of individual differences in attention and intelligence. We argue that the conflation of psychological theories and statistical models, as well as problematic inferences based on latent variables, impedes research progress and prevents theory building. Two studies designed to illustrate the unique features of POT relative to previous approaches are presented. In Study 1, a simulation is presented to illustrate precisely how POT accounts for the relationship between executive attention processes and g. In Study 2, three datasets from previous studies are reanalyzed (N = 243, N = 234, N = 945) and reveal a discrepancy between the POT simulated model and the unity/diversity model of executive function. We suggest that this discrepancy is largely due to methodological problems in previous studies but also reflects different goals of research on individual differences in attention. The unity/diversity model is designed to facilitate research on executive function and dysfunction associated with cognitive and neural development and disease. POT is uniquely suited to guide and facilitate research on individual differences in cognitive ability and the investigation of executive attention processes underlying g.
Keyphrases
  • working memory
  • endothelial cells
  • mental health
  • case control
  • oxidative stress
  • public health
  • single cell
  • physical activity