A Multiplex Fragment-Ion-Based Method for Accurate Proteome Quantification.
Jianhui LiuYuan ZhouYichu ShanBaofeng ZhaoYechen HuZhigang SuiZhen LiangLihua ZhangYukui ZhangPublished in: Analytical chemistry (2019)
Multiplex proteome quantification with high accuracy is urgently required to achieve a comprehensive understanding of dynamic cellular and physiological processes. Among the existing quantification strategies, fragment-ion-based methods can provide highly accurate results, but the multiplex capacity is limited to 3-plex. Herein, we developed a multiplex pseudo-isobaric dimethyl labeling (m-pIDL) method to extend the capacity of the fragment-ion-based method to 6-plex by one-step dimethyl labeling with several millidalton and dalton mass differences between precursor ions and enlarging the isolation window of precursor ions to 10 m/ z during data acquisition. m-pIDL showed high quantification accuracy within the 20-fold dynamic range. Notably, the ratio compression was 1.13-fold in a benchmark two-proteome model (5:1 mixed E. coli proteins with HeLa proteins as interference), indicating that by m-pIDL, the ratio distortion of isobaric labeling approaches and the approximate 40% ratio shift of the label-free quantification strategy could be effectively eliminated. Additionally, m-pIDL did not show ratio variation among post-translational modifications (CV = 6.66%), which could benefit the measurement of universal protein properties for proteomic atlases. We further employed m-pIDL to monitor the time-resolved responses of the TGF-β-induced epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cell lines, which facilitated the finding of new potential regulatory proteins. Therefore, the 6-plex quantification of m-pIDL with the remarkably high accuracy might create new prospects for comprehensive proteome analysis.