Umpolung-Enabled Divergent Dearomative Carbonylations.
Ming-Yang WangWei-Long ZengLin ChenYu-Fei YuanWei LiPublished in: Angewandte Chemie (International ed. in English) (2024)
Although dearomative functionalizations enable the direct conversion of flat aromatics into precious three-dimensional architectures, the case for simple arenes remains largely underdeveloped owing to the high aromatic stabilization energy. We herein report a dearomative sequential addition of two nucleophiles to arene π-bonds through umpolung of chromium-arene complexes. This mode enables divergent dearomative carbonylation reactions of benzene derivatives by tolerating various nucleophiles in combination with alcohols or amines under CO-gas-free conditions, thus providing modular access to functionalized esters or amides. The tunable synthesis of 1,3- or 1,4-cyclohexadienes as well as the construction of carbon quaternary centers further highlight the versatility of this dearomatization. Diverse late-stage modifications and derivatizations towards synthetically challenging and bioactive molecules reveal the synthetic utility. A possible mechanism was proposed based on control experiments and intermediate tracking.