A Multiplex Fluorescence of Loop Primer Upon Self-Dequenching Loop-Mediated Isothermal Amplification Assay for the Detection of Epstein-Barr Virus and Human Parvovirus B19 in Clinical Transplant Samples.
Yushan XuMiaomiao LiMengjiao LinYan LvDawei CuiYongjun WangJue XiePublished in: Viral immunology (2024)
Viral infections are major causes of mortality in solid-organ and hematopoietic stem cell transplant recipients. Epstein-Barr virus (EBV) and Parvovirus B19 (B19V) are among the common viral infections after transplantation and were recommended for increased screening in relevant guidelines. Therefore, the development of rapid, specific, and cost-effective diagnostic methods for EBV and B19V is of paramount importance. We applied Fluorescence of Loop Primer Upon Self-Dequenching Loop-mediated Isothermal Amplification (FLOS-LAMP) for the first time to develop a novel multiplex assay for the detection of EBV and B19V; the fluorophore attached to the probe are self-quenched in unbound state. After binding to the dumbbell-shaped DNA target, the fluorophore is dequenched, resulting in fluorescence development. The novel multiplex FLOS-LAMP assay was optimized by testing various ratios of primer sets. This novel assay, with great specificity, did not cross-react with the common virus. For the detection of EBV and B19V, the limits of detection could reach 969 and 798 copies/μL, respectively, and the assay could be completed within 25 min. Applying this novel assay to detect 200 clinical transplant individuals indicated that the novel assay had high specificity and good sensitivity. We developed multiplex FLOS-LAMP assay for the detection of EBV and B19V, which has the potential to become an important tool for clinical transplant patient screening.