Quantitative Analysis of Radiation-Associated Parenchymal Lung Change.
Edward ChandyAdam SzmulAlkisti StavropoulouJoseph JacobCatarina VeigaDavid LandauJames WilsonSarah GullifordJohn D FenwickMaria A HawkinsCrispin HileyJamie R McClellandPublished in: Cancers (2022)
We present a novel classification system of the parenchymal features of radiation-induced lung damage (RILD). We developed a deep learning network to automate the delineation of five classes of parenchymal textures. We quantify the volumetric change in classes after radiotherapy in order to allow detailed, quantitative descriptions of the evolution of lung parenchyma up to 24 months after RT, and correlate these with radiotherapy dose and respiratory outcomes. Diagnostic CTs were available pre-RT, and at 3, 6, 12 and 24 months post-RT, for 46 subjects enrolled in a clinical trial of chemoradiotherapy for non-small cell lung cancer. All 230 CT scans were segmented using our network. The five parenchymal classes showed distinct temporal patterns. Moderate correlation was seen between change in tissue class volume and clinical and dosimetric parameters, e.g., the Pearson correlation coefficient was ≤0.49 between V30 and change in Class 2, and was 0.39 between change in Class 1 and decline in FVC. The effect of the local dose on tissue class revealed a strong dose-dependent relationship. Respiratory function measured by spirometry and MRC dyspnoea scores after radiotherapy correlated with the measured radiological RILD. We demonstrate the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible.
Keyphrases
- radiation induced
- radiation therapy
- locally advanced
- clinical trial
- early stage
- deep learning
- computed tomography
- rectal cancer
- magnetic resonance imaging
- contrast enhanced
- oxidative stress
- adipose tissue
- squamous cell carcinoma
- chronic obstructive pulmonary disease
- magnetic resonance
- study protocol
- skeletal muscle
- positron emission tomography
- air pollution
- phase ii
- double blind
- mass spectrometry
- diffusion weighted imaging