Login / Signup

Design of Single-Atom Catalysts on C 5 N 2 for Nitrogen Fixation at Ambient Conditions: A First-Principles Study.

Liying PanXuxin KangShan GaoXiang-Mei Duan
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2024)
Single atom catalysts (SACs) exhibit the flexible coordination structure of the active site and high utilization of active atoms, making them promising candidates for nitrogen reduction reaction (NRR) under ambient conditions. By the aid of first-principles calculations based on DFT, we have systematically explored the NRR catalytic behavior of thirteen 4d- and 5d-transition metal atoms anchored on 2D porous graphite carbon nitride C 5 ${_5 }$ N 2 ${_2 }$ . With high selectivity and outstanding activity, Zr, Nb, Mo, Ta, W and Re-doped C 5 ${_5 }$ N 2 ${_2 }$ are identified as potential nominees for NRR. Particularly, Mo@C 5 ${_5 }$ N 2 ${_2 }$ possesses an impressive low limiting potential of -0.39 V (corresponding to a very low temperature and atmospheric pressure), featuring the potential determining step involving *N-N transitions to *N-NH via the distal path. The catalytic performance of TM@C 5 ${_5 }$ N 2 ${_2 }$ can be well characterized by the adsorption strength of intermediate *N 2 ${_2 }$ H. Moreover, there exists a volcanic relationship between the catalytic property U L ${_{\rm{L}} }$ and the structure descriptor Ψ ${{{\Psi }}}$ , which validates the robustness and universality of Ψ ${{{\Psi }}}$ , combined with our previous study. This work sheds light on the design of SACs with eminent NRR performance.
Keyphrases
  • transition metal
  • particulate matter
  • air pollution
  • highly efficient
  • molecular dynamics
  • minimally invasive
  • quantum dots
  • crystal structure
  • molecular dynamics simulations
  • gold nanoparticles