Login / Signup

Site-Specifically Labeled Antibody-Drug Conjugate for Simultaneous Therapy and ImmunoPET.

Pierre AdumeauDelphine VivierSai Kiran SharmaJessica WangTerry ZhangAimei ChenBrian J AgnewBrian M Zeglis
Published in: Molecular pharmaceutics (2018)
The conjugation of antibodies with cytotoxic drugs can alter their in vivo pharmacokinetics. As a result, the careful assessment of the in vivo behavior, and specifically the tumor-targeting properties, of antibody-drug conjugates represents a crucial step in their development. In order to facilitate this process, we have created a methodology that facilitates the dual labeling of an antibody with both a toxin and a radionuclide for positron emission tomography (PET). To minimize the impact of these modifications, this chemoenzymatic approach leverages strain-promoted azide-alkyne click chemistry to graft both cargoes to the heavy chain glycans of the immuoglobulin's Fc domain. As a proof-of-concept, a HER2-targeting trastuzumab immunoconjugate was created bearing both a monomethyl auristatin E (MMAE) toxin as well as the long-lived positron-emitting radiometal 89Zr ( t1/2 ≈ 3.3 days). Both the tumor targeting and therapeutic efficacy of the 89Zr-trastuzumab-MMAE immunoconjugate were validated in vivo using a murine model of HER2-expressing breast cancer. The site-specifically dual-labeled construct enabled the clear visualization of tumor tissue via PET imaging, producing tumoral uptake of ∼70%ID/g. Furthermore, a longitudinal therapy study revealed that the immunoconjugate exerts significant antitumor activity, leading to a >90% reduction in tumor volume over the course of 20 days.
Keyphrases
  • pet imaging
  • positron emission tomography
  • cancer therapy
  • computed tomography
  • escherichia coli
  • epidermal growth factor receptor
  • drug delivery
  • young adults
  • fluorescent probe
  • replacement therapy
  • childhood cancer