Chemotherapy alters the prognostic biomarker histopathological growth pattern (HGP) phenotype in colorectal liver metastases (CRLMs) patients. We aimed to develop a CT-based radiomics model to predict the transformation of the HGP phenotype after chemotherapy. This study included 181 patients with 298 CRLMs who underwent preoperative contrast-enhanced CT followed by partial hepatectomy between January 2007 and July 2022 at two institutions. HGPs were categorized as pure desmoplastic HGP (pdHGP) or non-pdHGP. The samples were allocated to training, internal validation, and external validation cohorts comprising 153, 65, and 29 CRLMs, respectively. Radiomics analysis was performed on pre-enhanced, arterial phase, portal venous phase (PVP), and fused images. The model was used to predict prechemotherapy HGPs in 112 CRLMs, and HGP transformation was analysed by comparing these findings with postchemotherapy HGPs determined pathologically. The prevalence of pdHGP was 19.8% (23/116) and 45.8% (70/153) in chemonaïve and postchemotherapy patients, respectively (P < 0.001). The PVP radiomics signature showed good performance in distinguishing pdHGP from non-pdHGPs (AUCs of 0.906, 0.877, and 0.805 in the training, internal validation, and external validation cohorts, respectively). The prevalence of prechemotherapy pdHGP predicted by the radiomics model was 33.0% (37/112), and the prevalence of postchemotherapy pdHGP according to the pathological analysis was 47.3% (53/112; P = 0.029). The transformation of HGP was bidirectional, with 15.2% (17/112) of CRLMs transforming from prechemotherapy pdHGP to postchemotherapy non-pdHGP and 30.4% (34/112) transforming from prechemotherapy non-pdHGP to postchemotherapy pdHGP (P = 0.005). CT-based radiomics method can be used to effectively predict the HGP transformation in chemotherapy-treated CRLM patients, thereby providing a basis for treatment decisions.
Keyphrases
- contrast enhanced
- end stage renal disease
- computed tomography
- magnetic resonance imaging
- diffusion weighted
- liver metastases
- newly diagnosed
- chronic kidney disease
- magnetic resonance
- ejection fraction
- peritoneal dialysis
- dual energy
- diffusion weighted imaging
- squamous cell carcinoma
- positron emission tomography
- machine learning
- optical coherence tomography
- deep learning
- virtual reality