Login / Signup

β-Catenin Preserves the Stem State of Murine Bone Marrow Stromal Cells Through Activation of EZH2.

Buer SenChristopher R ParadiseZhihui XieJeyantt SankaranGunes UzerMaya StynerMark B MeyerAmel DudakovicAndre J van WijnenJanet E Rubin
Published in: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2020)
During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. β-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that β-catenin was additive with cytoskeletal signals to prevent adipogenesis, and β-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. β-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with β-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of β-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of β-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, β-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to β-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.
Keyphrases