Login / Signup

Bark Beetles Utilize Ophiostomatoid Fungi to Circumvent Host Tree Defenses.

Rashaduz ZamanCourtney MayAziz UllahNadir Erbilgin
Published in: Metabolites (2023)
Bark beetles maintain symbiotic associations with a diversity of microbial organisms, including ophiostomatoid fungi. Studies have frequently reported the role of ophiostomatoid fungi in bark beetle biology, but how fungal symbionts interact with host chemical defenses over time is needed. We first investigated how inoculations by three fungal symbionts of mountain pine beetle affect the terpene chemistry of live lodgepole pine trees. We then conducted a complimentary laboratory experiment specifically measuring the host metabolite degradation by fungi and collected the fungal organic volatiles following inoculations with the same fungal species on lodgepole pine logs. In both experiments, we analyzed the infected tissues for their terpene chemistry. Additionally, we conducted an olfactometer assay to determine whether adult beetles respond to the volatile organic chemicals emitted from each of the three fungal species. We found that all fungi upregulated terpenes as early as two weeks after inoculations. Similarly, oxygenated monoterpene concentrations also increased by several folds (only in logs). A large majority of beetles tested showed a strong attraction to two fungal species, whereas the other fungus repelled the beetles. Together this study shows that fungal symbionts can alter host defense chemistry, assist beetles in overcoming metabolite toxicity, and provide possible chemical cues for bark beetle attraction.
Keyphrases
  • cell wall
  • gene expression
  • oxidative stress
  • high throughput
  • genetic diversity
  • single cell
  • atomic force microscopy
  • single molecule
  • gestational age
  • case control