Login / Signup

Non-intersecting Path Constructions for TASEP with Inhomogeneous Rates and the KPZ Fixed Point.

Elia BisiYuchen LiaoAxel SaenzNikos Zygouras
Published in: Communications in mathematical physics (2023)
We consider a discrete-time TASEP, where each particle jumps according to Bernoulli random variables with particle-dependent and time-inhomogeneous parameters. We use the combinatorics of the Robinson-Schensted-Knuth correspondence and certain intertwining relations to express the transition kernel of this interacting particle system in terms of ensembles of weighted, non-intersecting lattice paths and, consequently, as a marginal of a determinantal point process. We next express the joint distribution of the particle positions as a Fredholm determinant, whose correlation kernel is given in terms of a boundary-value problem for a discrete heat equation. The solution to such a problem finally leads us to a representation of the correlation kernel in terms of random walk hitting probabilities, generalizing the formulation of Matetski et al. (Acta Math. 227(1):115-203, 2021) to the case of both particle- and time-inhomogeneous rates. The solution to the boundary value problem in the fully inhomogeneous case appears with a finer structure than in the homogeneous case.
Keyphrases
  • magnetic resonance imaging
  • neural network
  • network analysis