Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B.
Yuhan TangJuan LiChao GaoYanyan XuYanyan LiXiao YuJing WangLiegang LiuPing YaoPublished in: Oxidative medicine and cellular longevity (2016)
The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS) and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min) resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw). Intense exercise and thapsigargin- (Tg-) induced ERS (glucose-regulated protein 78, GRP78) and inflammatory cytokines levels (IL-6 and TNF-α) were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K) induction, Ca(2+) restoration, and blockade of the activities of Jun N-terminal kinase (JNK), activating transcription factor 6 (ATF6) and especially NF-κB (p65 and p50 nuclear translocation). A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor), AEBSF (ATF6 inhibitor), and especially PDTC (NF-κB inhibitor) enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals.
Keyphrases
- oxidative stress
- endoplasmic reticulum stress
- induced apoptosis
- signaling pathway
- diabetic rats
- nuclear factor
- pi k akt
- transcription factor
- high intensity
- ischemia reperfusion injury
- dna damage
- physical activity
- toll like receptor
- resistance training
- cell death
- high glucose
- rheumatoid arthritis
- cell proliferation
- type diabetes
- body composition
- lps induced
- drug induced
- small molecule
- liver injury
- tyrosine kinase
- dna binding
- protein protein