Login / Signup

Chemical quenching of singlet oxygen by plastoquinols and their oxidation products in Arabidopsis.

Ursula FerrettiJoanna CiuraBrigitte KsasMarek RácMichaela SedlářováJerzy KrukMichel HavauxPavel Pospíšil
Published in: The Plant journal : for cell and molecular biology (2018)
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1 O2 ) formed during high light stress in higher plants. Although quenching of 1 O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1 O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol-9 (PQH2 -9) in chemical quenching of 1 O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2 -9 and plastochromanol-8 biosynthesis. In this work, direct evidence for chemical quenching of 1 O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1 O2 was associated with consumption of PQH2 -9 and formation of its various oxidized forms. Oxidation of PQH2 -9 by 1 O2 leads to plastoquinone-9 (PQ-9), which is subsequently oxidized to hydroxyplastoquinone-9 [PQ(OH)-9]. We provide here evidence that oxidation of PQ(OH)-9 by 1 O2 results in the formation of trihydroxyplastoquinone-9 [PQ(OH)3 -9]. It is concluded here that PQH2 -9 serves as an efficient 1 O2 chemical quencher in Arabidopsis, and PQ(OH)3 -9 can be considered as a natural product of 1 O2 reaction with PQ(OH)-9. The understanding of the mechanisms underlying 1 O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.
Keyphrases
  • energy transfer
  • hydrogen peroxide
  • transcription factor
  • arabidopsis thaliana
  • gene expression
  • mental health
  • dna methylation
  • cell wall