Ice formation is a catastrophic problem affecting our daily life in a number of ways. At present, deicing methods are costly, inefficient, and environmentally unfriendly. Recently, the use of superhydrophobic surfaces has been suggested as a potential passive anti-icing method. However, no surface is able to repel frost formation at a very cold temperature. In this work, we demonstrated the abilities of spatial control of ice formation and confinement of the ice-stacking direction. The control and confinement were achieved by manipulating the local free energy barrier for frosting. The V-shaped microgroove patterned surface, which possessed these abilities, exhibited the best anti-icing and deicing performances among the studied surfaces. The insight of this study can be applied to alleviate the impact of icing on our daily life and in many industrial systems.