Login / Signup

The Reaction of Sulfur Dioxide Radical Cation with Hydrogen and its Relevance in Solar Geoengineering Models.

Mauro SattaAntonella CartoniDaniele CatoneMattea Carmen CastrovilliPaola BolognesiNicola ZemaLorenzo Avaldi
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
SO2 has been proposed in solar geoengineering as a precursor of H2 SO4 aerosol, a cooling agent active in the stratosphere to contrast climate change. Atmospheric ionization sources can ionize SO2 into excited states of S O 2 · + , which quickly reacts with trace gases in the stratosphere. In this work we explore the reaction of H 2 D 2 with S O 2 · + excited by tunable synchrotron radiation, leading to H S O 2 + + H ( D S O 2 + + D ), where H contributes to O3 depletion and OH formation. Density Functional Theory and Variational Transition State Theory have been used to investigate the dynamics of the title barrierless and exothermic reaction. The present results suggest that solar geoengineering models should test the reactivity of S O 2 · + with major trace gases in the stratosphere, such as H2 since this is a relevant channel for the OH formation during the nighttime when there is not OH production by sunlight. OH oxides SO2 , triggering the chemical reactions leading to H2 SO4 aerosol.
Keyphrases