Biomass-Derived Carbon Aerogels for ORR/OER Bifunctional Oxygen Electrodes.
Yue JiaoKe XuHuining XiaoChangtong MeiJian LiPublished in: Nanomaterials (Basel, Switzerland) (2023)
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial electrochemical reactions that play vital roles in energy conversion and storage technologies, such as fuel cells and metal-air batteries. Typically, noble-metal-based catalysts are required to enhance the sluggish kinetics of the ORR and OER, but their high costs restrict their practical commercial applications. Thus, highly active and strong non-noble metal catalysts are essential to address the cost and durability challenge. Based on previous research, carbon-based catalysts may present the best alternatives to these precious metals in the future owing to their affordability, very large surface areas, and superior mechanical and electrical qualities. In particular, carbon aerogels prepared using biomass as the precursors are referred to as biomass-derived carbon aerogels. They have sparked broad attention and demonstrated remarkable performance in the energy conversion and storage sectors as they are ecologically beneficial, affordable, and have an abundance of precursors. Therefore, this review focuses on various nanostructured materials based on biomass-derived carbon aerogels as ORR/OER catalysts, including metal atoms, metal compounds, and alloys.